f06 — Linear Algebra Support Functions Introduction — 06

NAG C Library Chapter Introduction

f06 — Linear Algebra Support Functions

Contents
1 Scope of the Chapter 2
2 Background to the Problems 2
3 Recommendations on Choice and Use of Available Functions 2
3.1 Description of the f06 Functions 2
3.2 The Level-2 Matrix-vector Functions 3
3.3 Matrix storage schemes 4
3.3.1 Conventional StOrage ottt 4
3.3.2 Packed storage 4
333 Band Storage 5
3.3.4 Unit triangular matrices i it e 6
3.3.5 Real diagonal elements of complex matrices 6
3.4 Level-2 BLAS Details of Matrix-vector Operations 6
3.5 The Level-3 Matrix-matrix Functions 8
3.6 Level-3 BLAS Matrix-matrix Details of Operations 8
4 Index 9
5 Functions Withdrawn or Scheduled for Withdrawal 11
6 References 11

[NP3660/8] 106.1

Introduction — f06 NAG C Library Manual

1 Scope of the Chapter

This chapter is concerned with basic linear algebra functions which perform elementary algebraic
operations involving vectors and matrices.

2 Background to the Problems

All the functions in this chapter meet the specification of the Basic Linear Algebra Subprograms (BLAS)
in C as described in Datardina er al. (1992). These in turn were derived from the pioneering work of
Dongarra et al. (1988) and Dongarra et al. (1990) on Fortran 77 BLAS. The functions described are
concerned with vector operations, matrix-vector operations and matrix-matrix operations. These will be
referred to here as the Level-1 BLAS, Level-2 BLAS and Level-3 BLAS respectively. The terminology

reflects the number of operations involved. For example, a Level-2 function involves O(nz) operations for
an n by n matrix.

Table 1 indicates the NAG coded naming scheme for the functions in this chapter.

Level-2 Level-3
‘real”’ BLAS function f06p ¢ 06y ¢
‘complex” BLAS function f06s ¢ {06z ¢

Table 1

The C BLAS names for these functions are the same as the corresponding Fortran names except that they
are in lower case.

The functions in this chapter do not have full function documents, but instead are covered by general
descriptions in Section Complex sufficient to enable their use. As this chapter is concerned only with basic
linear algebra operations, the functions will not normally be required by the general user. The purpose of
each function is indicated in Section 4 so that those users requiring these functions to build specialist linear
algebra modules can determine which functions are of interest.

3 Recommendations on Choice and Use of Available Functions

See Section 4 for a list of the functions available for Level-2 (matrix-vector) and Level-3 (matrix-matrix).

3.1 Description of the f06 Functions

The argument lists use the following data types:

Integer an integer data type of at least 32 bits.

double the regular double precision floating-point type.

Complex a double precision complex type.

plus the enumeration types given by
typedef enum { NoTranspose, Transpose, ConjugateTranspose } MatrixTranspose;
typedef enum { UpperTriangle, LowerTriangle } MatrixTriangle;
typedef enum { UnitTriangular, NotUnitTriangular } MatrixUnitTriangular;
typedef enum { LeftSide, RightSide } OperationSide;

In this section we describe the purpose of each function and give information on the argument lists, where
appropriate indicating their general nature. Usually the association between the function arguments and the
mathematical variables is obvious and in such cases a description of the argument is omitted.

Within each section, the argument lists for all functions are presented, followed by the purpose of the
functions and information on the argument lists.

Within each section functions are listed in alphabetic order of the fifth character in the function name, so
that corresponding real and complex functions may have adjacent entries.

106.2 [NP3660/8]

f06 — Linear Algebra Support Functions Introduction — 06

3.2 The Level-2 Matrix-vector Functions

The matrix-vector functions all have one array argument representing a matrix; usually this is a two-
dimensional array but in some cases the matrix is represented by a one-dimensional array.

The size of the matrix is determined by the arguments m and n for an m by n rectangular matrix; and by
the argument n for an n by n symmetric, Hermitian, or triangular matrix. Note that it is permissible to call
the functions with m or n = 0, in which case the functions exit immediately without referencing their array
arguments. For band matrices, the bandwidth is determined by the arguments kl and ku for a rectangular
matrix with Kkl sub-diagonals and ku super-diagonals; and by the argument k for a symmetric, Hermitian,
or triangular matrix with k sub-diagonals and/or super-diagonals.

The description of the m X rn matrix consists either of the array name (a) followed by the trailing (last)
dimension of the array as declared in the calling (sub)program (tda), when the matrix is being stored in a
two-dimensional array; or the array name (ap) alone when the matrix is being stored as a (packed) vector.
In the former case the actual array must be allocated at least ((m — 1)d + 1) contiguous elements, where d
is the trailing dimension of the array, d >/, and / =n for arrays representing general, symmetric,
Hermitian and triangular matrices, / = kl + ku + 1 for arrays representing general band matrices and
| = k + 1 for symmetric, Hermitian and triangular band matrices. For one-dimensional arrays representing
matrices (packed storage) the actual array must contain at least %n(n + 1) elements.

The length of each vector, n, is represented by the argument n, and the routines may be called with non-
positive values of n, in which case the routine returns immediately.

In addition to the argument n, each vector argument also has an increment argument that immediately
follows the vector argument, and whose name consists of the three characters inc, followed by the name of
the vector. For example, a vector x will be represented by the two arguments x, incx. The increment
argument is the spacing (stride) in the array for which the elements of the vector occur. For instance, if
incx = 2, then the elements of x are in locations x[0],x[2],...,x[2 x n —2] of the array x and the
intermediate locations x[1],x[3],...,x[2 X n — 3] are not referenced.

Zero increments are not permitted. When inex > 0, the vector element x; is in the array element
x[(i — 1) x incx], and when incx < 0 the elements are stored in the reverse order so that the vector
element x; is in the array element x[—(n — i) x incx] and hence, in particular, the element x, is in x[0].
The declared length of the array x in the calling (sub)program must be at least (1 + (n — 1) x [incx]).

The arguments that specify options are enumeration arguments with the names trans, uplo and diag.
trans is used by the matrix-vector product functions as follows:

Value Meaning
NoTranspose Operate with the matrix
Transpose Operate with the transpose of the matrix
ConjugateTranspose Operate with the conjugate transpose of the matrix

In the real case the values Transpose and ConjugateTranspose have the same meaning.

uplo is used by the Hermitian, symmetric, and triangular matrix functions to specify whether the upper or
lower triangle is being referenced as follows:

Value Meaning
UpperTriangle Upper triangle
LowerTriangle Lower triangle

diag is used by the triangular matrix functions to specify whether or not the matrix is unit triangular, as
follows:

Value Meaning
UnitTriangular Unit triangular
NotUnitTriangular Non-unit triangular

When diag is supplied as UnitTriangular, the diagonal elements are not referenced.

[NP3660/8] 106.3

Introduction — f06 NAG C Library Manual

3.3 Matrix storage schemes
3.3.1 Conventional storage

The default scheme for storing matrices is the obvious one: a matrix 4 is stored in a two-dimensional array
A, with matrix element ;; stored in array element A(i,).

If a matrix is triangular (upper or lower, as specified by the argument uplo), only the elements of the
relevant triangle are stored; the remaining elements of the array need not be set. Such elements are
indicated by * in the examples below. For example, when n = 4:

Triangular matrix 4 Storage in array a

uplo = UpperTriangle aj; ap a3 dapg app ap apy dp

Qyy dyz Ay *oap ap ay

aszz Ay *oazy ay

dys * * * m
uplo = LowerTriangle ap a, *
dy; dy ay; dp

asy 4z ds3 ay axp ap ¥

aq) Qqp Q43 Quq aq) Qg Q43 Qg

Routines which handle symmetric or Hermitian matrices allow for either the upper or lower triangle of
the matrix (as specified by uplo) to be stored in the corresponding elements of the array; the remaining
elements of the array need not be set. For example, when n = 4:

Hermitian matrix A Storage in array a
uplo = UpperTriangle ap; ap ajiz A aypp ap ai A

P k

dip dyp dy3 Ay Ay dy3 dyg

p e % %

a3 43 dzz d3g asz3 dzg

e o = * * %

dig dp4 Q34 Qyq 44
uplo = LowerTriangle ay Gy Az ag ay; *

Ay ayp A4z dg ay; axp

p %
az) d3p d3zz 43 azp dz dsz
41 Qg Q43 Qg4 a41 G4y Q43 Qg

3.3.2 Packed storage

Symmetric, Hermitian or triangular matrices may be stored more compactly, if the relevant triangle (again
as specified by uplo) is packed by rows in a one-dimensional array.

if uplo = UpperTriangle, a; is stored in aplj — 1+ (2n —i)(i — 1)/2] for i < j;
if uplo = LowerTriangle, a; is stored in ap[j — 1 +i(i — 1)/2] for j <'i.

106.4 [NP3660/8]

f06 — Linear Algebra Support Functions Introduction — f06

For example:

Triangle of matrix A Packed storage in array ap
uplo = UpperTriangle ap dip 4z dig a11d12a13014 02023024 433034 44
N e N e N i N’
ay dyz dy
asz3 dszg
(27)
uplO = LOWerTriangle an dy] dp1Qpp A31d3pA33 Ax1A42043044
e ——
a dp
aszy dsz dsz
Qg1 Qgp Q43 Qaq

Note that for real symmetric matrices, packing the upper triangle by rows is equivalent to packing the
lower triangle by columns; packing the lower triangle by rows is equivalent to packing the upper triangle
by columns. (For complex Hermitian matrices, the only difference is that the off-diagonal elements are
conjugated.)

3.3.3 Band storage

A band matrix with kl subdiagonals and ku superdiagonals may be stored compactly in a two-dimensional
array with kl + ku + 1 columns and m rows. Rows of the matrix are stored in corresponding rows of the
array, and diagonals of the matrix are stored in columns of the array.

For example, when » =5, kl =2 and ku = 1:

Band matrix A Band storage in array a
ay ap * oapn ap
ay; dy a4 *oay ay axp
azy dsp Azz Az azp dsp A3z Az

Qg Qg3 Agq Aygs Qg d43 d4q Q45
ds3 ds4 dss asy asy ass ¥

The elements marked * in the upper left k; x k; triangle and lower right &, x k, of the array ab need not
be set, and are not referenced by the routines.

The following code fragment will transfer a band matrix 4(m, n) from conventional storage to band storage
ab

for (i=0; i<m; ++1i){
k+kl-1;
for (j=MAX(0,i-k1l); j<=MIN(n-1,i+ku); ++3j){
ab[i] [k+j]=A[1i]1[3];
¥
}

Triangular band matrices are stored in the same format, with either kl = 0 if upper triangular, or ku = 0 if
lower triangular.

For symmetric or Hermitian band matrices with £ subdiagonals or superdiagonals, only the upper or lower
triangle (as specified by uplo) need be stored.

The following code fragments will transfer a symmetric or Hermitian matrix 4(n,n) from conventional
storage to band storage ab if uplo = UpperTriangle

for (i=0; i<n; ++1i){
1=-i;
for (j=i; j<=MIN(n-1,i+k); ++3){
ab[i] [1+31=A[1i]1[]];
}

}

[NP3660/8] 106.5

Introduction — f06 NAG C Library Manual

if uplo = LowerTriangle

for (i=0; i<n; ++1i){
1=k-1;
for (J=MAX(0,i-k); j<=i; ++3){
ab[i] [1+3]1=A[1i]1[3];
b
}

For example, when n =5 and k = 2:

Hermitian band matrix 4 Band storage in array a
uplo = UpperTriangle aj; ap ap ay;; ap ap
dip axp a3 axy Ay dp3 A4
a;3 Gz Az; Q3 A3s az3 Azq A3
Gyg Q34 Quq Qg5 Ay ags *
azs dgs dss ass *
uplo = LowerTriangle ay ay as * % g
ay Ay axp ap *oay ap
az; azyp az; dg3 dss az; dyp a4z
Qgp Q43 Qg4 dsy gy Q43 Qug
as3 ds4 QAss as3 ds4 dss

Here the elements marked * in the upper left £ x k triangle and the lower right £ x k triangle need not be
set and are not referenced by the routines.

3.3.4 Unit triangular matrices

Some routines in this chapter have an option to handle unit triangular matrices (that is, triangular matrices
with diagonal elements = 1). This option is specified by an argument diag. If diag = UnitTriangular,
the diagonal elements of the matrix need not be stored, and the corresponding array elements are not
referenced by the routines. The storage scheme for the rest of the matrix (whether conventional, packed or
band) remains unchanged.

3.3.5 Real diagonal elements of complex matrices
Complex Hermitian matrices have diagonal elements that are by definition purely real.

On input only the real parts of the diagonal elements of Hermitian matrices are referenced. The imaginary
parts of the diagonals of output Hermitian matrices are set to zero.

3.4 Level-2 BLAS Details of Matrix-vector Operations

Throughout the following sections A" denotes the complex conjugate of 4" and @ denotes the complex
conjugate of the scalar .

dgemv (f06pac), zgemv (f06sac), dgbmv (f06pbc) and zgbmv (f06sbc) perform the operation

y < adx+ By, when trans = NoTranspose,
y «— ad’x+ By, when trans = Transpose,
y «— ad”x + By, when trans = ConjugateTranspose,

where 4 is a general matrix for dgemv (f06pac) and zgemv (f06sac), and is a general band matrix for
dgbmv (f06pbc) and zgbmv (f06sbc).

dsymv (f06pcc), zhemv (f06scc), dspmv (f06pec), zhpmv (f06sec), dsbmv (f06pdc) and zhbmv (f06sdc)
perform the operation

y — adx + By

where 4 is symmetric and Hermitian for dsymv (f06pcc) and zhemv (f06scc) respectively, is symmetric

106.6 [NP3660/8]

f06 — Linear Algebra Support Functions Introduction — 06

and Hermitian stored in packed form for dspmv (f06pec) and zhpmv (f06sec) respectively, and is
symmetric and Hermitian band for dsbmv (f06pdc) and zhbmv (f06sdc).

dtrmv (f06pfc), ztrmv (f06sfc), dtpmv (f06phc), ztpmv (f06shc), dtbmv (f06pgc) and ztbmv (f06sgc)
perform the operation

x < Ax, when trans = NoTranspose,
x — A"x, when trans = Transpose,
x — A"x, when trans = ConjugateTranspose,

where A4 is a triangular matrix for dtrmv (f06pfc) and ztrmv (f06sfc), is a triangular matrix stored in packed
form for dtpmv (f06phc) and ztpmv (f06shc), and is a triangular band matrix for dtbmv (f06pgc) and
ztbmv (f06sgc).

dtrsv (f06pjc), ztrsv (f06sjc), dtpsv (f06plc), ztpsv (f06slc), dtbsv (f06pkc) and ztbsv (f06skc) solve the
equations

Ax =b, when trans = NoTranspose,
A"x = b, when trans = Transpose,
Ax = b, when trans = ConjugateTranspose,

where A4 is a triangular matrix for dtrsv (f06pjc) and ztrsv (f06sjc), is a triangular matrix stored in packed
form for dtpsv (f06plc) and ztpsv (f06slc), and is a triangular band matrix for dtbsv (f06pkc) and ztbsv
(f06skc). The vector b must be supplied in the array x and is overwritten by the solution. It is important
to note that no test for singularity is included in these functions.

dger (f06pmc) and zgeru (f06smc) perform the operation A4 < axy’ + A4, where 4 is a general matrix.
zgerc (f06snc) performs the operation 4 «+— axyH + A, where A is a general complex matrix.

dsyr (f06ppc) and dspr (f06pqc) perform the operation 4 < axx” + A, where 4 is a symmetric matrix for
dsyr (f06ppc) and is a symmetric matrix stored in packed form for dspr (f06pqc).

zher (f06spc) and zhpr (f06sqc) perform the operation 4 — axx? 4+ 4, where 4 is an Hermitian matrix for
zher (f06spc) and is an Hermitian matrix stored in packed form for zhpr (f06sqc).

dsyr2 (f06prc) and dspr2 (foépsc) perform the operation A4 < axy’ + ayx” + A, where 4 is a symmetric
matrix for dsyr2 (f06prc) and is a symmetric matrix stored in packed form for dspr2 (f06psc).

zher2 (f06src) and zhpr2 (f06ssc) perform the operation 4 — axy’ + ayx’ + 4, where 4 is an Hermitian
matrix for zher2 (f06src) and is an Hermitian matrix stored in packed form for zhpr2 (f06ssc).

The following argument values are invalid:
any value of the enumerated arguments diag, trans, or uplo whose meaning is not specified.
m < 0
n<0
kl <0
ku < 0
k<0

tda < n for the functions involving general matrices or full Hermitian, symmetric or triangular
matrices tda < kl + ku + 1 for the functions involving general band matrices tda < k + 1 for the
functions involving band Hermitian, symmetric or triangular matrices

incx =0
incy =0

If a function is called with an invalid value then an error message is output on stderr, giving the name of
the function and the number of the first invalid argument, and execution is terminated.

[NP3660/8] 106.7

Introduction — f06 NAG C Library Manual

3.5 The Level-3 Matrix-matrix Functions

The matrix-matrix functions all have either two or three arguments representing a matrix, one of which is
an input-output argument, and in each case the arguments are two-dimensional arrays.

The sizes of the matrices are determined by one or more of the arguments m, n and k. The size of the
input-output array is always determined by the arguments m and n for a rectangular m by n matrix, and by
the argument n for a square n by n matrix. It is permissible to call the functions with m or n =0, in
which case the functions exit immediately without referencing their array arguments.

Many of the functions perform an operation of the form
C— P+ [3C,

where P is the product of two matrices, or the sum of two such products. When the inner dimension of
the matrix product is different from m or # it is denoted by k. Again it is permissible to call the functions
with k = 0; and if m > 0 and n > 0, but k = 0, then the functions perform the operation

C — [C.

As with the Level-2 functions (see Section 3.2) the description of the matrix consists of the array name (a
or b or ¢) followed by the second dimension (tda or tdb or tdc).

The arguments that specify options are ennumerated arguments with the names side, transa, transb, trans,
uplo and diag. uplo and diag have the same values and meanings as for the Level-2 functions (see
Section 3.2); transa, transb and trans have the same values and meanings as trans in the Level-2
functions, where transa and transb apply to the matrices 4 and B respectively. side is used by the
functions as follows:

Value Meaning
LeftSide Multiply general matrix by symmetric, Hermitian or triangular matrix on the left
Rightside Multiply general matrix by symmetric, Hermitian or triangular matrix on the right

The storage conventions for matrices are as for the Level-2 functions (see Section 3.2).

3.6 Level-3 BLAS Matrix-matrix Details of Operations

Here, A denotes the complex conjugate of 4" and @ denotes the complex conjugate of the scalar c.

dgemm (f06yac) and zgemm (f06zac) perform the operation indicated in the following table:

transa = NoTranspose transa = Transpose transa = ConjugateTranspose

transb = NoTranspose C «— adB + 3C C—ad"B+ BC C — ad"B+BC
Ais m X k, Ais k x m, Aiskxm
Biskxn Bis kxn Biskxn

transb = Transpose C—aB" 4+ 5C C— ad"B" + 8C C — ad"B" + 8C
Ais m Xk, Ais k xm, Ais k x m,
Bisnxk Bisnxk Bisnxk

transb = ConjugateTranspose C «— adB" + 5C C—ad"B" + gC C — ad”B" + gC
Ais m X k, Ais k x m, Ais k xm,
Bisnxk Bisnxk Bisnxk

where A and B are general matrices and C is a general m by n matrix.

dsymm (f06ycc), zhemm (f06zcc) and zsymm (f06ztc) perform the operation indicated in the following
table:

side = LeftSide side = RightSide
C«— adB+ (C C +— aBA+ 6C
Aismxm Bismxn
Bismxn Aisnxn

where A4 is symmetric for dsymm (f06ycc) and zsymm (f06ztc) and is Hermitian for dsymm (f06ycc) and
zhemm (f06zcc), B is a general matrix and C is a general m by n matrix.

dtrmm (f06yfc) and ztrmm (f06zfc) perform the operation indicated in the following table:

transa = NoTranspose transa = Transpose transa = ConjugateTranspose
side = LeftSide = B — adB B— ad"B B — ad"B
A is triangular m x m A is triangular m x m A is triangular m X m

106.8 [NP3660/8]

f06 — Linear Algebra Support Functions Introduction — f06

side = RightSide B «— aBA B« aBA" B — aBA"
A is triangular n X n A is triangular n x n A is triangular n x n

where B is a general m by n matrix.
dtrsm (f06yjc) and ztrsm (f06zjc) solve the equations, indicated in the following table, for X:

transa = NoTranspose transa = Transpose transa = ConjugateTranspose

side = LeftSide ~ AX = aB A'X = aB A"X = aB

A is triangular m X m 4 is triangular m x m 4 is triangular m x m
side = RightSide X4 = aB x4A" = oB XA" = aB

A is triangular n X n A is triangular n x n A is triangular n X n

where B is a general m by n matrix. The m by n solution matrix X is overwritten on the array B. It is
important to note that no test for singularity is included in these functions.

dsyrk (f06ypc), zherk (f06zpc) and zsyrk (f06zuc) perform the operation indicated in the following table:

trans = NoTranspose trans = Transpose trans = ConjugateTranspose

dsyrk (fobypc) € «— add” + pC C—ad"A+pC C—ad"4+p5C

zsyrk (f06zuc) C — ad4” + BC C—oad"a+pCc -

zherk (f06zpc) C — ad4a” + 3C - C— ad4+pC
Ais kxn Aisnxk Ais kxn

where 4 is a general matrix and C is an # by » symmetric matrix for dsyrk (f06ypc) and zsyrk (f06zuc),
and is an n by n Hermitian matrix for zherk (f06zpc).

dsyr2k (f06yrc), zher2k (f06zrc) and zsyr2k (f06zwc) perform the operation indicated in the following
table:

trans = NoTranspose trans = Transpose trans = ConjugateTranspose
dsyr2k (f06yrc) C «— aB” + aBA” + 5C C—ad’B+aB’4+5C C—ad"B+aB"4+ 3C
zsyr2k (f06zwe) € — aB” + aBA” + 5C C—ad"B+aB"4+pC -
zher2k (f06zrc) C — adB? +aBa’ + pCc - C— ad"B+aB"4+ pC

A and B are n x k A and B are k xn A and B are k xn

where 4 and B are general matrices and C is an n by n symmetric matrix for dsyr2k (f06yrc) and zsyr2k
(f06zwc), and is an n by n Hermitian matrix for zherk (f06zpc).

The following values of arguments are invalid:

any value of the ennumerated arguments side, transa, transb, trans, uplo or diag, whose meaning
is not specified.

m < 0

n<0

k<0

tda < the number of columns in the matrix A.
tdb < the number of columns in the matrix B.
tdc < the number of columnns in the matrix C.

If a function is called with an invalid value, then an error message is output on stderr, giving the name of
the function and the number of the first invalid argument, and execution is terminated.

4 Index

Level 1 (Vector) operations:
Complex vector(s),

multiply vector by reciprocal of a real scalarcccocevvevierieieecienieennn, nag_zrscl (f06kec)
Real vector(s),
multiply vector by reciprocal of a scalarcccocevievieiiniiniieeee, nag_drscl (f06fec)

[NP3660/8] 106.9

Introduction — f06 NAG C Library Manual

Level 2 (Matrix-vector and matrix) operations:
Complex matrix and vector(s),
matrix-vector product,

Hermitian band MatriXc..coccoceeviriirininininieienenencncsesesese e zhbmv (£06sdc)
Hermitian MAatriXccocceeveieeiieiiiesieeieeeieeeeeete et e esereesteeeaeeseeeeseessaeenseenseesenens zhemv (£f06scc)
Hermitian packed MAtriXcoceeeviiieniieiiiiieie ettt ste et see e eae e eaeeneens zhpmv (£06sec)
rectangular band MAtriXocoooeieiiieeiieee e zgbmv (£06sbc)
reCtanUIAr MALTIX ...eooiieieiieieeieie ettt ae st et eseebe e esteenaesaeens zgemv (f06sac)
triangular band MAatriXcccoecevieiiiieee e ztbmv (£06sgc)
TIANGZUIAT MALIIX .eeeiiiiiiieeie ettt ettt e et ee s b e e teesebe e saeenseenseeseneas ztrmv (£06sfc)
triangular Packed MALITXccceceeeieiieriieieeteie et ete et ste e beeae e eaeeneens ztpmv (£06shc)
rank-1 update,
HErmMitian MALIIX ...c.eecveiieriieiesieieeie ettt ette e eteseeeteenbeseeesesssensesseensenns zher (£06spc)
Hermitian packed MatriXcooeeeiirieriieieiieie ettt zhpr (£06sqc)
rectangular matrix, conjugated VECOTccccccuieviieecrierieeiierieeieeieesereeeeeseneas zgerc (£06snc)
rectangular matrix, unconjugated VECTOTc.ceveevierieniienierienieeieie e zgeru (£06smc)
rank-2 update,
Hermitian MAITXcocceceririreiiiieieieeteteeeitee sttt zher2 (£06src)
Hermitian packed MatriXccoceeviirieririenieie et zhpr2 (£06ssc)
solution of a system of equations:
triangular band MAtriXccccccoeeieiiieieee e ztbsv (£06skc)
trIANGUIAT MALIIX 1vetitietieieeteet ettt ettt st sttt be b b besaesaesaens ztrsv (£06sjc)
triangular Packed MALITXccvevvierieeieriieieeieeie ettt steeaeseeeaeeneens ztpsv (£06slc)

Real matrix and vector(s),
matrix-vector product,

rectangular band MAatriXc.cooeeviiiiiiniiiieece e dgbmv (£06pbc)
reCtanUIAT MALTIX oveociieieiiieicceeie ettt teeaesee e teeeeesbesseesseennesreens dgemv (f£06pac)
SyMmMEtric Dand MALTIXc.eciecierieriieienieieeteseee et ebe e sre e ene dsbmv (£06pdc)
SYMIMELTIC MALIIX ..evvevieereiieieieieieteteteteteseteteeseeseeseeseeseeseeseeseeseessessesessessenss dsymv (£06pcc)
symmetric packed MAIiXcocovieiiiiiiiiieeeeeeee e dspmv (£06pec)
triangular band MAatriXcccoooivieiiiieree e dtbmv (£06pgc)
TANGUIAT TNAITIX .eetieiiiitieieeiectce ettt st ettt sbe et sbeens dtrmv (£06pfc)
triangular packed MALITXccveveeeieeieriieie ettt et s dtpmv (£06phc)
rank-1 update,
TECtANGUIAT MALTIX 1.eeeiieiiiiieie ettt et beeeeneeen dger (£06pmc)
04 0010018 S (o 1 02 1 4 OSSOSO dsyr (£06ppc)
symmetric packed MAatriXccoooeviiiiiiiiieeee e dspr (£06pqc)
rank-2 update,
SYMIMELTIC MALIIX ..o.viviiviririeteeietieteee ettt ettt se et s te s eeesessere s ereesesneseeseresnens dsyr2 (£06prc)
symmetric packed MAITXoocevieriieiiiiieieeee e dspr2 (£06psc)
solution of system of equations,
triangular band MAatrIXoccoevivieiiiierec e dtbsv (£06pkc)
tIANGUIAT MALITX cevivieiieiieeieeeeeie ettt ettt eaeseeesteeaesteeseesaesseensessnennesseens dtrsv (£06pjc)
triangular packed MALITXccvevveeeieiieriieieeiteie ettt ste e s ae e dtpsv (£06plc)

Level 3 (Matrix-matrix) operations:
Complex matrices:
matrix-matrix product:

one MatrixX Hermitianoccooieiiiiiiiiiii e zhemm (£06zcc)

ONE MALTIX SYMIMEIIIC .veevieeiestieieetierieeteseeeteeeetesteeteeeesteeneesseesesnsesseensensennns zsymm (£06ztc)

TIANGUIAT MALIITX eeevieiieiieie ettt ettt sttt e bt etesaeesbeeneeseeeneesaeens ztrmm (£06zfc)

tWO TeCtanguIar MALTICESeoverveeieriieriieiestieieettete sttt eet ettt seeeste e e seeeneeeaeens zgemm (£06zac)
rank-2k update:

of a Hermitian MatriXcccooveeviriiniiniieiieiceeete et zher2k (£06zrc)

Of @ SYMMEIIIC MALITX ..eovietieiiitieiieiieiieiieeet ettt sttt b e zsyr2k (£06zwc)
rank-k update:

of a Hermitian MatriXcccoocieriiiiniieiie ettt zherk (£06zpc)

Of @ SYMMEIIIC MALTIX ..eeviiriieitieiieiiere ettt s zsyrk (£06zuc)
solution of triangular systems of eqUAtIONScccevieviieieniiecieieeie e ztrsm (£06zjc)

106.10 [NP3660/8]

f06 — Linear Algebra Support Functions Introduction — f06

Real matrices:
matrix-matrix product:

ONE MALTIX SYMIMEIIIC .veevieuietieieetieieeiesteete et etesteeteetesteetesaeenteeneesbeeeenseenes dsymm (£06ycc)
one MAtriX THANGUIATeoiiiiiiitiei et dtrmm (£06yfc)
rectangular MAtriCEScccociririiiiiiiieiceeee e dgemm (f£06yac)
rank-2k update of a SyMmetric MatriXccoccevceriririenenereee e dsyr2k (£06yrc)
rank-k update of a SYMMmEtric MALIIXcccceevverieriieiienieiieienieeee st dsyrk (£06ypc)
solution of triangular systems Of eqUAtiONSccccevieriirieniiesierieeieneeee e dtrsm (£06yjc)

5 Functions Withdrawn or Scheduled for Withdrawal

None.

6 References

Datardina S P, Du Croz J J, Hammarling S J and Pont M W (1992) A proposed specification of BLAS
routines in C The Journal of C Language Translation 3 295-309

Dongarra J J, Du Croz J J, Duff I S and Hammarling S (1990) A set of Level 3 basic linear algebra
subprograms ACM Trans. Math. Software 16 1-28

Dongarra J J, Du Croz J J, Hammarling S and Hanson R J (1988) An extended set of FORTRAN basic
linear algebra subprograms ACM Trans. Math. Software 14 1-32

[NP3660/8] f06.11 (last)

	f06 Introduction
	1 Scope of the Chapter
	2 Background to the Problems
	3 Recommendations on Choice and Use of Available Functions
	3.1 Description of the f06 Functions
	3.2 The Level-atrixtor Functions
	3.3 Matrix storage schemes
	3.3.1 Conventional storage
	3.3.2 Packed storage
	3.3.3 Band storage
	3.3.4 Unit triangular matrices
	3.3.5 Real diagonal elements of complex matrices

	3.4 Level-LAS Details of Matrixtor Operations
	3.5 The Level-atrixatrix Functions
	3.6 Level-LAS Matrixatrix Details of Operations

	4 Index
	5 Functions Withdrawn or Scheduled for Withdrawal
	6 References

	NAG C Library Manual, Mark 8
	Introduction
	Essential Introduction
	Mark 8 News
	Library Contents
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Online Help

	Indexes
	Keywords in Context
	GAMS Classification Index

	Implementation-specific Information
	a00 - Library Identification
	Chapter Introduction

	a02 - Complex Arithmetic
	Chapter Introduction

	c02 - Zeros of Polynomials
	Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	c06 - Fourier Transforms
	Chapter Introduction

	d01 - Quadrature
	Chapter Introduction

	d02 - Ordinary Differential Equations
	Chapter Introduction

	d03 - Partial Differential Equations
	Chapter Introduction

	d06 - Mesh Generation
	Chapter Introduction

	e01 - Interpolation
	Chapter Introduction

	e02 - Curve and Surface Fitting
	Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	Chapter Introduction

	f - Linear Algebra
	Chapter Introduction

	f01 - Matrix Factorizations
	Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	f03 - Determinants
	Chapter Introduction

	f04 - Simultaneous Linear Equations
	Chapter Introduction

	f06 - Linear Algebra Support Functions
	Chapter Introduction

	f07 - Linear Equations (LAPACK)
	Chapter Introduction

	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	f11 - Sparse Linear Algebra
	Chapter Introduction

	f12 - Large Scale Eigenproblems
	Chapter Introduction

	f16 - NAG Interface to BLAS
	Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	Chapter Introduction

	g02 - Correlation and Regression Analysis
	Chapter Introduction

	g03 - Multivariate Methods
	Chapter Introduction

	g04 - Analysis of Variance
	Chapter Introduction

	g05 - Random Number Generators
	Chapter Introduction

	g07 - Univariate Estimation
	Chapter Introduction

	g08 - Nonparametric Statistics
	Chapter Introduction

	g10 - Smoothing in Statistics
	Chapter Introduction

	g11 - Contingency Table Analysis
	Chapter Introduction

	g12 - Survival Analysis
	Chapter Introduction

	g13 - Time Series Analysis
	Chapter Introduction

	h - Operations Research
	Chapter Introduction

	m01 - Sorting
	Chapter Introduction

	s - Approximations of Special Functions
	Chapter Introduction

	x01 - Mathematical Constants
	Chapter Introduction

	x02 - Machine Constants
	Chapter Introduction

	x04 - Input/Output Utilities
	Chapter Introduction

