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1  Scope of the Chapter

This chapter is concerned with basic linear algebra functions which perform elementary algebraic
operations involving vectors and matrices.

2 Background to the Problems

All the functions in this chapter meet the specification of the Basic Linear Algebra Subprograms (BLAS)
in C as described in Datardina er al. (1992). These in turn were derived from the pioneering work of
Dongarra et al. (1988) and Dongarra et al. (1990) on Fortran 77 BLAS. The functions described are
concerned with vector operations, matrix-vector operations and matrix-matrix operations. These will be
referred to here as the Level-1 BLAS, Level-2 BLAS and Level-3 BLAS respectively. The terminology

reflects the number of operations involved. For example, a Level-2 function involves O(nz) operations for
an n by n matrix.

Table 1 indicates the NAG coded naming scheme for the functions in this chapter.

Level-2 Level-3
‘real”’ BLAS function f06p ¢ 06y ¢
‘complex” BLAS function f06s ¢ {06z ¢

Table 1

The C BLAS names for these functions are the same as the corresponding Fortran names except that they
are in lower case.

The functions in this chapter do not have full function documents, but instead are covered by general
descriptions in Section Complex sufficient to enable their use. As this chapter is concerned only with basic
linear algebra operations, the functions will not normally be required by the general user. The purpose of
each function is indicated in Section 4 so that those users requiring these functions to build specialist linear
algebra modules can determine which functions are of interest.

3 Recommendations on Choice and Use of Available Functions

See Section 4 for a list of the functions available for Level-2 (matrix-vector) and Level-3 (matrix-matrix).

3.1 Description of the f06 Functions

The argument lists use the following data types:

Integer an integer data type of at least 32 bits.

double the regular double precision floating-point type.

Complex a double precision complex type.

plus the enumeration types given by
typedef enum { NoTranspose, Transpose, ConjugateTranspose } MatrixTranspose;
typedef enum { UpperTriangle, LowerTriangle } MatrixTriangle;
typedef enum { UnitTriangular, NotUnitTriangular } MatrixUnitTriangular;
typedef enum { LeftSide, RightSide } OperationSide;

In this section we describe the purpose of each function and give information on the argument lists, where
appropriate indicating their general nature. Usually the association between the function arguments and the
mathematical variables is obvious and in such cases a description of the argument is omitted.

Within each section, the argument lists for all functions are presented, followed by the purpose of the
functions and information on the argument lists.

Within each section functions are listed in alphabetic order of the fifth character in the function name, so
that corresponding real and complex functions may have adjacent entries.
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3.2 The Level-2 Matrix-vector Functions

The matrix-vector functions all have one array argument representing a matrix; usually this is a two-
dimensional array but in some cases the matrix is represented by a one-dimensional array.

The size of the matrix is determined by the arguments m and n for an m by n rectangular matrix; and by
the argument n for an n by n symmetric, Hermitian, or triangular matrix. Note that it is permissible to call
the functions with m or n = 0, in which case the functions exit immediately without referencing their array
arguments. For band matrices, the bandwidth is determined by the arguments kl and ku for a rectangular
matrix with Kkl sub-diagonals and ku super-diagonals; and by the argument k for a symmetric, Hermitian,
or triangular matrix with k sub-diagonals and/or super-diagonals.

The description of the m X rn matrix consists either of the array name (a) followed by the trailing (last)
dimension of the array as declared in the calling (sub)program (tda), when the matrix is being stored in a
two-dimensional array; or the array name (ap) alone when the matrix is being stored as a (packed) vector.
In the former case the actual array must be allocated at least ((m — 1)d + 1) contiguous elements, where d
is the trailing dimension of the array, d >/, and / =n for arrays representing general, symmetric,
Hermitian and triangular matrices, / = kl + ku + 1 for arrays representing general band matrices and
| = k + 1 for symmetric, Hermitian and triangular band matrices. For one-dimensional arrays representing
matrices (packed storage) the actual array must contain at least %n(n + 1) elements.

The length of each vector, n, is represented by the argument n, and the routines may be called with non-
positive values of n, in which case the routine returns immediately.

In addition to the argument n, each vector argument also has an increment argument that immediately
follows the vector argument, and whose name consists of the three characters inc, followed by the name of
the vector. For example, a vector x will be represented by the two arguments x, incx. The increment
argument is the spacing (stride) in the array for which the elements of the vector occur. For instance, if
incx = 2, then the elements of x are in locations x[0],x[2],...,x[2 x n —2] of the array x and the
intermediate locations x[1],x[3],...,x[2 X n — 3] are not referenced.

Zero increments are not permitted. When inex > 0, the vector element x; is in the array element
x[(i — 1) x incx], and when incx < 0 the elements are stored in the reverse order so that the vector
element x; is in the array element x[—(n — i) x incx] and hence, in particular, the element x, is in x[0].
The declared length of the array x in the calling (sub)program must be at least (1 + (n — 1) x [incx]).

The arguments that specify options are enumeration arguments with the names trans, uplo and diag.
trans is used by the matrix-vector product functions as follows:

Value Meaning
NoTranspose Operate with the matrix
Transpose Operate with the transpose of the matrix
ConjugateTranspose Operate with the conjugate transpose of the matrix

In the real case the values Transpose and ConjugateTranspose have the same meaning.

uplo is used by the Hermitian, symmetric, and triangular matrix functions to specify whether the upper or
lower triangle is being referenced as follows:

Value Meaning
UpperTriangle Upper triangle
LowerTriangle Lower triangle

diag is used by the triangular matrix functions to specify whether or not the matrix is unit triangular, as
follows:

Value Meaning
UnitTriangular Unit triangular
NotUnitTriangular Non-unit triangular

When diag is supplied as UnitTriangular, the diagonal elements are not referenced.
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3.3 Matrix storage schemes
3.3.1 Conventional storage

The default scheme for storing matrices is the obvious one: a matrix 4 is stored in a two-dimensional array
A, with matrix element ;; stored in array element A(i,).

If a matrix is triangular (upper or lower, as specified by the argument uplo), only the elements of the
relevant triangle are stored; the remaining elements of the array need not be set. Such elements are
indicated by * in the examples below. For example, when n = 4:

Triangular matrix 4 Storage in array a

uplo = UpperTriangle aj; ap a3 dapg app ap apy dp

Qyy dyz Ay *oap ap ay

aszz Ay *oazy ay

dys * * * m
uplo = LowerTriangle ap a, *
dy; dy ay;  dp

asy 4z ds3 ay axp ap ¥

aq) Qqp Q43 Quq aq) Qg Q43 Qg

Routines which handle symmetric or Hermitian matrices allow for either the upper or lower triangle of
the matrix (as specified by uplo) to be stored in the corresponding elements of the array; the remaining
elements of the array need not be set. For example, when n = 4:

Hermitian matrix A Storage in array a
uplo = UpperTriangle ap; ap ajiz A aypp ap ai A

P k

dip dyp dy3 Ay Ay dy3 dyg

p e % %

a3 43 dzz  d3g asz3  dzg

e o = * * %

dig  dp4 Q34 Qyq 44
uplo = LowerTriangle ay Gy Az ag ay; *

Ay ayp A4z dg ay;  axp

p %
az) d3p d3zz 43 azp dz  dsz
41 Qg Q43 Qg4 a41 G4y Q43 Qg

3.3.2 Packed storage

Symmetric, Hermitian or triangular matrices may be stored more compactly, if the relevant triangle (again
as specified by uplo) is packed by rows in a one-dimensional array.

if uplo = UpperTriangle, a; is stored in aplj — 1+ (2n —i)(i — 1)/2] for i < j;
if uplo = LowerTriangle, a; is stored in ap[j — 1 +i(i — 1)/2] for j <'i.
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For example:

Triangle of matrix A Packed storage in array ap
uplo = UpperTriangle ap dip 4z dig a11d12a13014 02023024 433034 44
N e N e N i N’
ay dyz dy
asz3  dszg
(27)
uplO = LOWerTriangle an dy] dp1Qpp A31d3pA33 Ax1A42043044
e ——
a dp
aszy dsz  dsz
Qg1 Qgp Q43 Qaq

Note that for real symmetric matrices, packing the upper triangle by rows is equivalent to packing the
lower triangle by columns; packing the lower triangle by rows is equivalent to packing the upper triangle
by columns. (For complex Hermitian matrices, the only difference is that the off-diagonal elements are
conjugated.)

3.3.3 Band storage

A band matrix with kl subdiagonals and ku superdiagonals may be stored compactly in a two-dimensional
array with kl + ku + 1 columns and m rows. Rows of the matrix are stored in corresponding rows of the
array, and diagonals of the matrix are stored in columns of the array.

For example, when » =5, kl =2 and ku = 1:

Band matrix A Band storage in array a
ay  ap * oapn ap
ay; dy a4 *oay ay  axp
azy dsp Azz Az azp dsp A3z Az

Qg Qg3 Agq  Aygs Qg  d43  d4q Q45
ds3 ds4  dss asy asy ass ¥

The elements marked * in the upper left k; x k; triangle and lower right &, x k, of the array ab need not
be set, and are not referenced by the routines.

The following code fragment will transfer a band matrix 4(m, n) from conventional storage to band storage
ab

for (i=0; i<m; ++1i){
k+kl-1;
for (j=MAX(0,i-k1l); j<=MIN(n-1,i+ku); ++3j){
ab[i] [k+j]=A[1i]1[3];
¥
}

Triangular band matrices are stored in the same format, with either kl = 0 if upper triangular, or ku = 0 if
lower triangular.

For symmetric or Hermitian band matrices with £ subdiagonals or superdiagonals, only the upper or lower
triangle (as specified by uplo) need be stored.

The following code fragments will transfer a symmetric or Hermitian matrix 4(n,n) from conventional
storage to band storage ab if uplo = UpperTriangle

for (i=0; i<n; ++1i){
1=-i;
for (j=i; j<=MIN(n-1,i+k); ++3){
ab[i] [1+31=A[1i]1[]];
}

}
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if uplo = LowerTriangle

for (i=0; i<n; ++1i){
1=k-1;
for (J=MAX(0,i-k); j<=i; ++3){
ab[i] [1+3]1=A[1i]1[3];
b
}

For example, when n =5 and k = 2:

Hermitian band matrix 4 Band storage in array a
uplo = UpperTriangle aj; ap ap ay;; ap ap
dip axp a3 axy Ay dp3 A4
a;3 Gz Az; Q3 A3s az3  Azq A3
Gyg Q34 Quq Qg5 Ay ags *
azs dgs  dss ass *
uplo = LowerTriangle ay ay  as * % g
ay Ay axp ap *oay ap
az; azyp az; dg3 dss az; dyp a4z
Qgp Q43 Qg4 dsy gy Q43 Qug
as3  ds4  QAss as3  ds4  dss

Here the elements marked * in the upper left £ x k triangle and the lower right £ x k triangle need not be
set and are not referenced by the routines.

3.3.4 Unit triangular matrices

Some routines in this chapter have an option to handle unit triangular matrices (that is, triangular matrices
with diagonal elements = 1). This option is specified by an argument diag. If diag = UnitTriangular,
the diagonal elements of the matrix need not be stored, and the corresponding array elements are not
referenced by the routines. The storage scheme for the rest of the matrix (whether conventional, packed or
band) remains unchanged.

3.3.5 Real diagonal elements of complex matrices
Complex Hermitian matrices have diagonal elements that are by definition purely real.

On input only the real parts of the diagonal elements of Hermitian matrices are referenced. The imaginary
parts of the diagonals of output Hermitian matrices are set to zero.

3.4 Level-2 BLAS Details of Matrix-vector Operations

Throughout the following sections A" denotes the complex conjugate of 4" and @ denotes the complex
conjugate of the scalar .

dgemv (f06pac), zgemv (f06sac), dgbmv (f06pbc) and zgbmv (f06sbc) perform the operation

y < adx+ By,  when trans = NoTranspose,
y «— ad’x+ By, when trans = Transpose,
y «— ad”x + By, when trans = ConjugateTranspose,

where 4 is a general matrix for dgemv (f06pac) and zgemv (f06sac), and is a general band matrix for
dgbmv (f06pbc) and zgbmv (f06sbc).

dsymv (f06pcc), zhemv (f06scc), dspmv (f06pec), zhpmv (f06sec), dsbmv (f06pdc) and zhbmv (f06sdc)
perform the operation

y — adx + By

where 4 is symmetric and Hermitian for dsymv (f06pcc) and zhemv (f06scc) respectively, is symmetric
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and Hermitian stored in packed form for dspmv (f06pec) and zhpmv (f06sec) respectively, and is
symmetric and Hermitian band for dsbmv (f06pdc) and zhbmv (f06sdc).

dtrmv (f06pfc), ztrmv (f06sfc), dtpmv (f06phc), ztpmv (f06shc), dtbmv (f06pgc) and ztbmv (f06sgc)
perform the operation

x < Ax,  when trans = NoTranspose,
x — A"x, when trans = Transpose,
x — A"x, when trans = ConjugateTranspose,

where A4 is a triangular matrix for dtrmv (f06pfc) and ztrmv (f06sfc), is a triangular matrix stored in packed
form for dtpmv (f06phc) and ztpmv (f06shc), and is a triangular band matrix for dtbmv (f06pgc) and
ztbmv (f06sgc).

dtrsv (f06pjc), ztrsv (f06sjc), dtpsv (f06plc), ztpsv (f06slc), dtbsv (f06pkc) and ztbsv (f06skc) solve the
equations

Ax =b, when trans = NoTranspose,
A"x = b, when trans = Transpose,
Ax = b, when trans = ConjugateTranspose,

where A4 is a triangular matrix for dtrsv (f06pjc) and ztrsv (f06sjc), is a triangular matrix stored in packed
form for dtpsv (f06plc) and ztpsv (f06slc), and is a triangular band matrix for dtbsv (f06pkc) and ztbsv
(f06skc). The vector b must be supplied in the array x and is overwritten by the solution. It is important
to note that no test for singularity is included in these functions.

dger (f06pmc) and zgeru (f06smc) perform the operation A4 < axy’ + A4, where 4 is a general matrix.
zgerc (f06snc) performs the operation 4 «+— axyH + A, where A is a general complex matrix.

dsyr (f06ppc) and dspr (f06pqc) perform the operation 4 < axx” + A, where 4 is a symmetric matrix for
dsyr (f06ppc) and is a symmetric matrix stored in packed form for dspr (f06pqc).

zher (f06spc) and zhpr (f06sqc) perform the operation 4 — axx? 4+ 4, where 4 is an Hermitian matrix for
zher (f06spc) and is an Hermitian matrix stored in packed form for zhpr (f06sqc).

dsyr2 (f06prc) and dspr2 (foépsc) perform the operation A4 < axy’ + ayx” + A, where 4 is a symmetric
matrix for dsyr2 (f06prc) and is a symmetric matrix stored in packed form for dspr2 (f06psc).

zher2 (f06src) and zhpr2 (f06ssc) perform the operation 4 — axy’ + ayx’ + 4, where 4 is an Hermitian
matrix for zher2 (f06src) and is an Hermitian matrix stored in packed form for zhpr2 (f06ssc).

The following argument values are invalid:
any value of the enumerated arguments diag, trans, or uplo whose meaning is not specified.
m < 0
n<0
kl <0
ku < 0
k<0

tda < n for the functions involving general matrices or full Hermitian, symmetric or triangular
matrices tda < kl + ku + 1 for the functions involving general band matrices tda < k + 1 for the
functions involving band Hermitian, symmetric or triangular matrices

incx =0
incy =0

If a function is called with an invalid value then an error message is output on stderr, giving the name of
the function and the number of the first invalid argument, and execution is terminated.
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3.5 The Level-3 Matrix-matrix Functions

The matrix-matrix functions all have either two or three arguments representing a matrix, one of which is
an input-output argument, and in each case the arguments are two-dimensional arrays.

The sizes of the matrices are determined by one or more of the arguments m, n and k. The size of the
input-output array is always determined by the arguments m and n for a rectangular m by n matrix, and by
the argument n for a square n by n matrix. It is permissible to call the functions with m or n =0, in
which case the functions exit immediately without referencing their array arguments.

Many of the functions perform an operation of the form
C— P+ [3C,

where P is the product of two matrices, or the sum of two such products. When the inner dimension of
the matrix product is different from m or # it is denoted by k. Again it is permissible to call the functions
with k = 0; and if m > 0 and n > 0, but k = 0, then the functions perform the operation

C — [C.

As with the Level-2 functions (see Section 3.2) the description of the matrix consists of the array name (a
or b or ¢) followed by the second dimension (tda or tdb or tdc).

The arguments that specify options are ennumerated arguments with the names side, transa, transb, trans,
uplo and diag. uplo and diag have the same values and meanings as for the Level-2 functions (see
Section 3.2); transa, transb and trans have the same values and meanings as trans in the Level-2
functions, where transa and transb apply to the matrices 4 and B respectively. side is used by the
functions as follows:

Value Meaning
LeftSide Multiply general matrix by symmetric, Hermitian or triangular matrix on the left
Rightside Multiply general matrix by symmetric, Hermitian or triangular matrix on the right

The storage conventions for matrices are as for the Level-2 functions (see Section 3.2).

3.6 Level-3 BLAS Matrix-matrix Details of Operations

Here, A denotes the complex conjugate of 4" and @ denotes the complex conjugate of the scalar c.

dgemm (f06yac) and zgemm (f06zac) perform the operation indicated in the following table:

transa = NoTranspose  transa = Transpose transa = ConjugateTranspose

transb = NoTranspose C «— adB + 3C C—ad"B+ BC C — ad"B+BC
Ais m X k, Ais k x m, Aiskxm
Biskxn Bis kxn Biskxn

transb = Transpose C—aB" 4+ 5C C— ad"B" + 8C C — ad"B" + 8C
Ais m Xk, Ais k xm, Ais k x m,
Bisnxk Bisnxk Bisnxk

transb = ConjugateTranspose C «— adB" + 5C C—ad"B" + gC C — ad”B" + gC
Ais m X k, Ais k x m, Ais k xm,
Bisnxk Bisnxk Bisnxk

where A and B are general matrices and C is a general m by n matrix.

dsymm (f06ycc), zhemm (f06zcc) and zsymm (f06ztc) perform the operation indicated in the following
table:

side = LeftSide side = RightSide
C«— adB+ (C C +— aBA+ 6C
Aismxm Bismxn
Bismxn Aisnxn

where A4 is symmetric for dsymm (f06ycc) and zsymm (f06ztc) and is Hermitian for dsymm (f06ycc) and
zhemm (f06zcc), B is a general matrix and C is a general m by n matrix.

dtrmm (f06yfc) and ztrmm (f06zfc) perform the operation indicated in the following table:

transa = NoTranspose transa = Transpose transa = ConjugateTranspose
side = LeftSide = B — adB B— ad"B B — ad"B
A is triangular m x m A is triangular m x m A is triangular m X m
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side = RightSide B «— aBA B« aBA" B — aBA"
A is triangular n X n A is triangular n x n A is triangular n x n

where B is a general m by n matrix.
dtrsm (f06yjc) and ztrsm (f06zjc) solve the equations, indicated in the following table, for X:

transa = NoTranspose transa = Transpose transa = ConjugateTranspose

side = LeftSide ~ AX = aB A'X = aB A"X = aB

A is triangular m X m 4 is triangular m x m 4 is triangular m x m
side = RightSide X4 = aB x4A" = oB XA" = aB

A is triangular n X n A is triangular n x n A is triangular n X n

where B is a general m by n matrix. The m by n solution matrix X is overwritten on the array B. It is
important to note that no test for singularity is included in these functions.

dsyrk (f06ypc), zherk (f06zpc) and zsyrk (f06zuc) perform the operation indicated in the following table:

trans = NoTranspose trans = Transpose trans = ConjugateTranspose

dsyrk (fobypc) € «— add” + pC C—ad"A+pC C—ad"4+p5C

zsyrk (f06zuc)  C — ad4” + BC C—oad"a+pCc -

zherk (f06zpc)  C — ad4a” + 3C - C— ad4+pC
Ais kxn Aisnxk Ais kxn

where 4 is a general matrix and C is an # by » symmetric matrix for dsyrk (f06ypc) and zsyrk (f06zuc),
and is an n by n Hermitian matrix for zherk (f06zpc).

dsyr2k (f06yrc), zher2k (f06zrc) and zsyr2k (f06zwc) perform the operation indicated in the following
table:

trans = NoTranspose trans = Transpose trans = ConjugateTranspose
dsyr2k (f06yrc)  C «— aB” + aBA” + 5C C—ad’B+aB’4+5C C—ad"B+aB"4+ 3C
zsyr2k (f06zwe) € — aB” + aBA” + 5C C—ad"B+aB"4+pC -
zher2k (f06zrc)  C — adB? +aBa’ + pCc - C— ad"B+aB"4+ pC

A and B are n x k A and B are k xn A and B are k xn

where 4 and B are general matrices and C is an n by n symmetric matrix for dsyr2k (f06yrc) and zsyr2k
(f06zwc), and is an n by n Hermitian matrix for zherk (f06zpc).

The following values of arguments are invalid:

any value of the ennumerated arguments side, transa, transb, trans, uplo or diag, whose meaning
is not specified.

m < 0

n<0

k<0

tda < the number of columns in the matrix A.
tdb < the number of columns in the matrix B.
tdc < the number of columnns in the matrix C.

If a function is called with an invalid value, then an error message is output on stderr, giving the name of
the function and the number of the first invalid argument, and execution is terminated.

4 Index

Level 1 (Vector) operations:
Complex vector(s),

multiply vector by reciprocal of a real scalar .........cccocevvevierieieecienieennn, nag_zrscl (f06kec)
Real vector(s),
multiply vector by reciprocal of a scalar ..........cccocevievieiiniiniieeee, nag_drscl (f06fec)

[NP3660/8] 106.9



Introduction — f06 NAG C Library Manual

Level 2 (Matrix-vector and matrix) operations:
Complex matrix and vector(s),
matrix-vector product,

Hermitian band MatriX ......c..coccoceeviriirininininieienenencncsesesese e zhbmv (£06sdc)
Hermitian MAatriX .....ccocceeveieeiieiiiesieeieeeieeeeeete et e esereesteeeaeeseeeeseessaeenseenseesenens zhemv (£f06scc)
Hermitian packed MAtriX .......coceeeviiieniieiiiiieie ettt ste et see e eae e eaeeneens zhpmv (£06sec)
rectangular band MAtriX ......ocoooeieiiieeiieee e zgbmv (£06sbc)
reCtanUIAr MALTIX  ...eooiieieiieieeieie ettt ae st et eseebe e esteenaesaeens zgemv (f06sac)
triangular band MAatriX .....cccoecevieiiiieee e ztbmv (£06sgc)
TIANGZUIAT MALIIX  .eeeiiiiiiieeie ettt ettt e et ee s b e e teesebe e saeenseenseeseneas ztrmv (£06sfc)
triangular Packed MALITX ......ccceceeeieiieriieieeteie et ete et ste e beeae e eaeeneens ztpmv (£06shc)
rank-1 update,
HErmMitian MALIIX ...c.eecveiieriieiesieieeie ettt ette e eteseeeteenbeseeesesssensesseensenns zher (£06spc)
Hermitian packed MatriX .......cooeeeiirieriieieiieie ettt zhpr (£06sqc)
rectangular matrix, conjugated VECOT ........ccccccuieviieecrierieeiierieeieeieesereeeeeseneas zgerc (£06snc)
rectangular matrix, unconjugated VECTOT ......c.ceveevierieniienierienieeieie e zgeru (£06smc)
rank-2 update,
Hermitian MAITX .....cocceceririreiiiieieieeteteeeitee sttt zher2 (£06src)
Hermitian packed MatriX .......ccoceeviirieririenieie et zhpr2 (£06ssc)
solution of a system of equations:
triangular band MAtriX .....ccccccoeeieiiieieee e ztbsv (£06skc)
trIANGUIAT MALIIX  1vetitietieieeteet ettt ettt st sttt be b b besaesaesaens ztrsv (£06sjc)
triangular Packed MALITX ......ccvevvierieeieriieieeieeie ettt steeaeseeeaeeneens ztpsv (£06slc)

Real matrix and vector(s),
matrix-vector product,

rectangular band MAatriX .....c.cooeeviiiiiiniiiieece e dgbmv (£06pbc)
reCtanUIAT MALTIX  oveociieieiiieicceeie ettt teeaesee e teeeeesbesseesseennesreens dgemv (f£06pac)
SyMmMEtric Dand MALTIX ....c.eciecierieriieienieieeteseee et ebe e sre e ene dsbmv (£06pdc)
SYMIMELTIC MALIIX ..evvevieereiieieieieieteteteteteseteteeseeseeseeseeseeseeseeseeseessessesessessenss dsymv (£06pcc)
symmetric packed MAIiX ....cocovieiiiiiiiiieeeeeeee e dspmv (£06pec)
triangular band MAatriX .....cccoooivieiiiieree e dtbmv (£06pgc)
TANGUIAT TNAITIX  .eetieiiiitieieeiectce ettt st ettt sbe et sbeens dtrmv (£06pfc)
triangular packed MALITX ......ccveveeeieeieriieie ettt et s dtpmv (£06phc)
rank-1 update,
TECtANGUIAT MALTIX  1.eeeiieiiiiieie ettt et beeeeneeen dger (£06pmc)
04 0010018 S (o 1 02 1 4 OSSOSO dsyr (£06ppc)
symmetric packed MAatriX ......ccoooeviiiiiiiiieeee e dspr (£06pqc)
rank-2 update,
SYMIMELTIC MALIIX ..o.viviiviririeteeietieteee ettt ettt se et s te s eeesessere s ereesesneseeseresnens dsyr2 (£06prc)
symmetric packed MAITX ....oocevieriieiiiiieieeee e dspr2 (£06psc)
solution of system of equations,
triangular band MAatrIX .....occoevivieiiiierec e dtbsv (£06pkc)
tIANGUIAT MALITX  cevivieiieiieeieeeeeie ettt ettt eaeseeesteeaesteeseesaesseensessnennesseens dtrsv (£06pjc)
triangular packed MALITX ......ccvevveeeieiieriieieeiteie ettt ste e s ae e dtpsv (£06plc)

Level 3 (Matrix-matrix) operations:
Complex matrices:
matrix-matrix product:

one MatrixX Hermitian ..........occooieiiiiiiiiiii e zhemm (£06zcc)

ONE MALTIX SYMIMEIIIC .veevieeiestieieetierieeteseeeteeeetesteeteeeesteeneesseesesnsesseensensennns zsymm (£06ztc)

TIANGUIAT MALIITX  eeevieiieiieie ettt ettt sttt e bt etesaeesbeeneeseeeneesaeens ztrmm (£06zfc)

tWO TeCtanguIar MALTICES ....eoverveeieriieriieiestieieettete sttt eet ettt seeeste e e seeeneeeaeens zgemm (£06zac)
rank-2k update:

of a Hermitian MatriX .......cccooveeviriiniiniieiieiceeete et zher2k (£06zrc)

Of @ SYMMEIIIC MALITX ..eovietieiiitieiieiieiieiieeet ettt sttt b e zsyr2k (£06zwc)
rank-k update:

of a Hermitian MatriX .......cccoocieriiiiniieiie ettt zherk (£06zpc)

Of @ SYMMEIIIC MALTIX ..eeviiriieitieiieiiere ettt s zsyrk (£06zuc)
solution of triangular systems of eqUAtIONS ..........cccevieviieieniiecieieeie e ztrsm (£06zjc)
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Real matrices:
matrix-matrix product:

ONE MALTIX SYMIMEIIIC .veevieuietieieetieieeiesteete et etesteeteetesteetesaeenteeneesbeeeenseenes dsymm (£06ycc)
one MAtriX THANGUIAT ......eoiiiiiiitiei et dtrmm (£06yfc)
rectangular MAtriCES .......cccociririiiiiiiieiceeee e dgemm (f£06yac)
rank-2k update of a SyMmetric MatriX ......ccoccevceriririenenereee e dsyr2k (£06yrc)
rank-k update of a SYMMmEtric MALIIX ....cccceevverieriieiienieiieienieeee st dsyrk (£06ypc)
solution of triangular systems Of eqUAtiONS .........ccccevieriirieniiesierieeieneeee e dtrsm (£06yjc)

5 Functions Withdrawn or Scheduled for Withdrawal

None.

6 References
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